M相;铝和锡元素使淬火态Ti-12Mo和Ti-33Nb合金中α″相增加,为α稳定剂;在退火态Ti-12Mo和Ti-33Nb合金中,锡能够抑制β相向ω相的转变,表现出β稳定剂倾向;铝可以使退火态Ti-12Mo合金中α相增加,但在退火态Ti-33Nb合金中却表现出β稳定剂倾向;铁为强β稳定剂,可使Ti-33Nb合金及淬火态Ti-12Mo合金组织中β或βM相增加,但由于退火态Ti-12Mo-2Fe合金中的β相易发生共析分解,其α相有所增加;铌、钼同样为β稳定剂,作用效果比铁的作用效果弱。">
搜索热:1 --
扫一扫 加微信
不同成分及糖心产精国品免费入口*完整版态糖心产精国品免费入口*完整版的物相组成
Phase Composition of Nickel Free Titanium Based Alloys withDifferent Composition and Heat Treatment

摘    要
采用真空电弧炉熔炼不同成分的Ti-Mo、Ti-Nb系合金,研究了铝、铁、锡、铌、钼等元素对淬火态和退火态合金物相组成的影响。结果表明:随钼含量增加,退火态Ti-Mo合金中α相含量减少,β相含量增加,淬火态Ti-Mo合金中依次形成α'、α″和βM相;铝和锡元素使淬火态Ti-12Mo和Ti-33Nb合金中α″相增加,为α稳定剂;在退火态Ti-12Mo和Ti-33Nb合金中,锡能够抑制β相向ω相的转变,表现出β稳定剂倾向;铝可以使退火态Ti-12Mo合金中α相增加,但在退火态Ti-33Nb合金中却表现出β稳定剂倾向;铁为强β稳定剂,可使Ti-33Nb合金及淬火态Ti-12Mo合金组织中β或βM相增加,但由于退火态Ti-12Mo-2Fe合金中的β相易发生共析分解,其α相有所增加;铌、钼同样为β稳定剂,作用效果比铁的作用效果弱。
标    签 糖心产精国品免费入口*完整版 糖心产精国品免费入口*完整版 物相组成 nickel free titanium based alloy 糖心产精国品免费入口*完整版 phase composition

Abstract
Ti-Mo and Ti-Nb alloys with different composition were melted by using vacuum arc furnace. The effects of aluminum, iron, tin, niobium and molybdenum elements on the 糖心产精国品免费入口*完整版of quenched and annealed alloys were studied. The results show that with increasing content of molybdenum, the α-phase content in annealed Ti-Mo alloy decreased, the β phase content increased, and α',α″ and βM phases were formed sequentially in quenched Ti-Mo alloy. Aluminum and tin elements could increase the content of α phase in quenched Ti-12Mo and Ti-33Nb alloys, which acted as α stabilizer. In annealed Ti-12Mo and Ti-33Nb alloys, tin could suppress the transformation of β to ω, showing the tendency of β stabilizer. Aluminum increased α phase content in annealed Ti-12Mo alloy, but showed the tendency of β stabilizer in annealed Ti-33Nb alloy. Iron was a strong β stabilizer, which could increase the β or βM phase in Ti-33Nb alloy and quenched Ti-12Mo alloy. However, due to the eutectic decomposition of β phase, α phase content in annealed Ti-12Mo-2Fe alloy increased. Niobium and molybdenum were also β stabilizers, which showed weaker effects than iron.

中图分类号 TG115.22DOI 10.11973/jxgccl202008006

所属栏目 试验研究

基金项目 江苏青蓝工程(科技创新团队)资助项目(201239);苏州市职业大学科研平台资助项目(201804000050);江苏省高校自然科学研究面上项目(19KJD470005);苏州市重点产业技术创新项目(SYG201939)

收稿日期 2019/12/17

修改稿日期 2020/6/18

网络出版日期

作者单位 点击查看

备注糖心产精国品免费入口*完整版(1962—),男,安徽舒城人,教授,博士

引用该论文: ZHOU Zhengcun,ZHU Xiaobin,DU Jie,YAN Yongjian,GU Suyi,YANG Yifei. Phase Composition of Nickel Free Titanium Based Alloys withDifferent Composition and Heat Treatment[J]. Materials for mechancial engineering, 2020, 44(8): 27~31
糖心产精国品免费入口*完整版,糖心产精国品免费入口*完整版,糖心产精国品免费入口*完整版,糖心产精国品免费入口*完整版,糖心产精国品免费入口*完整版,糖心产精国品免费入口*完整版. 不同成分及糖心产精国品免费入口*完整版态糖心产精国品免费入口*完整版的物相组成[J]. 机械工程材料, 2020, 44(8): 27~31


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文

参考文献
【1】 ZHANG D C,MAO Y F,LI Y L,et al.Effect of ternary alloying elements on microstructure and superelastictity of Ti-Nb alloys[J].Materials Science and Engineering:A, 2013,559:706-710.

【2】 MIYAZAKI S,OTSUKA K.Development of shape memory alloys[J].ISIJ International, 1989,29(5):353-377.

【3】 OSHIDA Y,MIYAZAKI S.Corrosion and biocompatibility of shape memory alloys[J].Zairyo-to-Kankyo, 1991,40(12):834-844.

【4】 BARRAS C D J,MYERS K A.Nitinol—its use in vascular surgery and other applications[J].European Journal of Vascular and Endovascular Surgery, 2000,19(6):564-569.

【5】 FRICK C P,LANG T W,SPARK K,et al.Stress-induced martensitic transformations and shape memory at nanometer scales[J].Acta Materialia, 2006,54(8):2223-2234.

【6】 SHABALOVSKAYA S. Laser welding of Ni-Ti shape memory alloys[C]//Proceedings of the First International Conference on Shape Memory and Superelastic Technologies. California:[s.n.], 1994.

【7】 WANG K,YIN X M,CHAO D T,et al.BID: A novel BH3 domain-only death agonist[J].Genes & Development, 1996,10(22):2859-2869.

【8】 BAKER C.The shape-memory effect in a titanium-35 wt.% niobium alloy[J].Metal Science Journal, 1971,5(1):92-100.

【9】 AL-ZAIN Y,KIM H Y,KOYANO T,et al.Anomalous temperature dependence of the superelastic behavior of Ti-Nb-Mo alloys[J].Acta Materialia, 2011,59(4):1464-1473.

【10】 MARTINS J R S,ARAÚJO R O,NOGUEIRA R A,et al.Internal friction and microstructure of Ti and Ti-Mo alloys containing oxygen[J].Archives of Metallurgy and Materials, 2016,61(1):25-30.

【11】 USATEGUI L,NÓ M L,MAYER S,et al.Internal friction and atomic relaxation processes in an intermetallic Mo-rich Ti-44Al-7Mo (γ+βo) model alloy[J].Materials Science and Engineering:A,2017,700:495-502.

【12】 ZHAO X F,NⅡNOMI M,NAKAI M,et al.Beta type Ti-Mo alloys with changeable Young's modulus for spinal fixation applications[J].Acta Biomaterialia,2012,8(5):1990-1997.

【13】 BUENCONSEJO P J S,KIM H Y,HOSODA H,et al.Shape memory behavior of Ti-Ta and its potential as a high-temperature shape memory alloy[J].Acta Materialia, 2009,57(4):1068-1077.

【14】 MURRAY J L. Phase Diagram of Binary Titanium Alloys [M]. [s.l.]:ASM international, 1987.

【15】 BUENCONSEJO P J S,KIM H Y,MIYAZAKI S.Effect of ternary alloying elements on the shape memory behavior of Ti-Ta alloys[J].Acta Materialia, 2009,57(8):2509-2515.

【16】 SUTOU Y,YAMAUCHI K,TAKAGI T,et al.Mechanical properties of Ti-6at.% Mo-4at.% Sn alloy wires and their application to medical guidewire[J].Materials Science and Engineering:A, 2006,438/439/440:1097-1100.

【17】 KOLLI R P,JOOST W J,ANKEM S. Phase stability and stress-induced transformations in beta titanium alloys[J].JOM, 2015,67(6):1273-1280.

【18】 FAROOQ M U,KHALID F A,ZAIGHAM H,et al. Superelastic behaviour of Ti-Nb-Al ternary shape memory alloys for biomedical applications[J].Materials Letters, 2014,121:58-61.

【19】 RAABE D,SANDER B,FRIÁK M,et al.Theory-guided bottom-up design of β-titanium alloys as biomaterials based on first principles calculations:Theory and experiments[J].Acta Materialia, 2007,55(13):4475-4487.

【20】 徐丽娟,陈玉勇,刘志光,等.牙科用Ti-Mo合金的组织及性能特点[J].特种铸造及有色合金,2006,26(7):406-408.

【21】 MAESHIMA T,NISHIDA M.Shape memory properties of biomedical Ti-Mo-Ag and Ti-Mo-Sn alloys[J].Materials Transactions, 2004,45(4):1096-1100.

【22】 MAESHIMA T,USHIMARU S,YAMAUCHI K,et al.Effect of 糖心产精国品免费入口*完整版 on shape memory effect and superelasticity in Ti-Mo-Sn alloys[J].Materials Science and Engineering:A, 2006,438/439/440:844-847.

【23】 MIN X H,EMURA S,ZHANG L,et al.Effect of Fe and Zr additions on ω phase formation in β-type Ti-Mo alloys[J].Materials Science and Engineering:A, 2008,497(1/2):74-78.

【24】 KIM H Y,OHMATSU Y,KIM J I,et al.Mechanical properties and shape memory behavior of Ti-Mo-Ga alloys[J].Materials Transactions, 2004,45(4):1090-1095.

【25】 XU J L,TAO S C,BAO L Z,et al.Effects of Mo contents on the microstructure properties and cytocompatibility of the microwave sintered porous Ti-Mo alloys[J].Materials Science and Engineering:C, 2019,97:156-165.

【26】 糖心产精国品免费入口*完整版,糖心产精国品免费入口*完整版,糖心产精国品免费入口*完整版,等.烧结β型Ti-Nb合金中由间隙原子引起的Snoek弛豫[J].物理学报,2019,68(8):179-185.

【27】 周雪英. β型Ti-Mo合金{332}〈113〉孪生行为研究[D].大连:大连理工大学,2018.

【28】 MATLAKHOVA L A,MATLAKHOV A N,MONTEIRO S N,et al.Properties and structural characteristics of Ti-Nb-Al alloys[J].Materials Science and Engineering:A, 2005,393(1/2):320-326.

【29】 ABDEL-HADY M,HINOSHITA K,MORINAGA M.General approach to phase stability and elastic properties of β-type Ti-alloys using electronic parameters[J]. Scripta Materialia, 2006,55(5):477-48.

相关信息
 标题  相关频次
碳对烧结态和淬火态钛铌合金物相组成与压缩性能的影响
 5
油淬Ni64Al36合金的逆马氏体相变
 5
17-4PH不锈钢磁粉检测中出现的问题分析
 2
18CrNiMo7-6A钢减速机输出轴断裂原因
 2
20Cr2Ni4钢制打击罩硬度异常分析
 2
304不锈钢薄壁焊管表面残余拉应力的测定及消除
 2
42CrMo钢齿轮轴断裂原因分析
 2
42CrMo钢蜗杆开裂原因分析
 2
45钢棒料冲击功偏低的原因分析
 2
50Mn钢齿圈断齿原因分析
 2
6.8级冷镦螺栓的表层残余应力分布
 2
65Mn钢锁片断裂分析
 2
7075铝合金高锁螺母开裂原因
 2
960MPa级含钼低碳钢钼含量与糖心产精国品免费入口*完整版工艺的确定
 2
9Cr2Mo钢转向辊调质开裂原因分析
 2
CaCO3含量对自保护药芯焊丝脱渣性的影响
 2
GH4169合金冷拔管加工工艺参数的优化
 2
封口费案川普前律师科恩作证说了什么?
 2
Hollo-Bolt单向螺栓套管肢断裂原因分析
 2
Mg-Al系镁合金的耐蚀性能研究进展
 2
Ni-P化学镀层及其复合镀层结合强度的声发射研究
 2
P22钢的里氏硬度与布氏硬度的转换关系
 2
QBe2铍青铜棒糖心产精国品免费入口*完整版断裂原因分析
 2
SS400热轧碳钢氧化皮的结构改变与保护性
 2
Ta2O5-WO3-RO2(R=Zr,Ti)三元系统中的相关系
 2
Ti-6Al-4V合金厚板固溶时效糖心产精国品免费入口*完整版工艺的正交试验优化
 2
ZA40合金糖心产精国品免费入口*完整版工艺的确定
 2
ZG15Cr2Mo1钢力学性能差异较大的原因分析
 2
苯乙烯装置中氢压机吸气阀的断裂原因
 2
箔片动压气体轴承系统中箔片表面涂层材料的测试表征
 2